ISSN 1600-5368

Nurziana Ngah, Nabihah M. Shah, Rusila Yusof and Bohari M Yamin*

School of Chemical Sciences and Food Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia

Correspondence e-mail: bohari@pkrisc.cc.ukm.my

Key indicators

Single-crystal X-ray study T = 298 K Mean σ (C–C) = 0.005 Å R factor = 0.039 wR factor = 0.097 Data-to-parameter ratio = 8.4

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

(2S)-2-(3-Benzoylthioureido)-3-(1*H*-imidazol-4-yl)propionic acid

The title compound, (2S)-2-(3-benzoylthioureido)-3-(1*H*imidazolium-4-yl)propionate, $C_{14}H_{14}N_4O_3S$, is zwitterionic with protonated positively charged imidazoyl and deprotonated negatively charged carboxylate groups. The intermolecular hydrogen bonds, $C-H\cdots O$ and $N-H\cdots O$, involve all the O atoms with the H atoms from the amine and imidazoylium, forming a two-dimensional network parallel to the (100) plane. Received 21 March 2005 Accepted 5 May 2005 Online 14 May 2005

Comment

L-Histidine is known to exist as a zwitterion with protonated amino and negatively charged carboxylate groups (Edington & Harding, 1974 Madden *et al.*, 1972). In some histidine salts, such as L-histidinium dinitrate, the histidine moiety acts as dication with protonated α -amino and imidazoyl groups and the nitrate counter-anions (Benali-Cherif *et al.*, 2002). The title compound, (I), is a neutral thiourea derivative of L-histidine, which exists as a zwitterion with protonated positively charged imidazoyl and deprotonated negatively charged carboxylate groups. The bond lengths of the imidazolium group (Table 1) are shorter than those in L-(+)-histidine (Madden *et al.*, 1972) and DL-histidine (Edington & Harding, 1974), indicating strong delocalization of electrons.

The benzoyl and 3-(1*H*-imidazol-4-yl)propionic acid groups are at *trans* and *cis* positions with respect to the thiono C=S group across the C8–N1 and C8–N2 bonds, respectively. The structural geometry of the benzoylthiourea moiety is normal (Allen *et al.*, 1987) and in agreement with 3-(3-benzoylthiouredo)propionic acid (Yusof & Yamin, 2003). The phenyl ring (C1–C6), the central thiourea group (S1/N1/N2/C7/C8/C9) [maximum deviation 0.031 (2)° for atom N1] and the imidazoylium group (C11/C12/N3/C13/N4/C14) [maximum deviation 0.025 (3)° for atom C11] are each planar. The central thiourea S1/N1/N2/C7/C8/C9 fragment makes dihedral angles with the phenyl and the imidazolium (C11/C12/N3/C13/N4/ C14) fragments of 37.24 (13) and 33.94 (13)°, respectively.

© 2005 International Union of Crystallography Printed in Great Britain – all rights reserved

Figure 1

The molecular structure of (I), with 50% probability displacement ellipsoids. Hydrogen bonds are shown as dashed lines.

Packing diagram of the title complex, viewed down the *a* axis. Dashed lines denote C-H···O and N-H···O hydrogen bonds.

There are three intramolecular interactions, viz.C9- $H9A \cdots S1$, $N2 - H2A \cdots O1$ and $N3 - H3C \cdots O3$, forming a pseudo-five-membered ring (C9-H9A-S1-C8-N2), a pseudo-six-membered ring (N2-H2A-O1-C7-N1-C8) and a pseudo-seven-membered ring (N3-H3C-O3-C10-C9-C11-C12), respectively. In the crystal structure, the molecules are linked by intermolecular hydrogen bonds, N1- $H1A \cdots O3^{i}$, $N4 - H4B \cdots O2^{ii}$ and $C13-H13A\cdots O1^{ii}$ (symmetry codes as in Table 2) to form a two-dimensional network parallel to the (100) plane (Fig. 2).

Experimental

A solution of L-histidine (0.01 mol, 1.55 g) in acetone (50 ml) was added dropwise to a two-necked round-bottomed flask containing equimolar amount of benzoyl isothiocyanate in acetone. The mixture was refluxed about 2 h and filtered into a beaker containing some ice. The resulting white precipitate was washed with acetone-distilled water and dried under vacuum. Recrystallization from ethanol vielded single crystals suitable for X-ray analysis (m.p. 445-446 K). Analysis found (calculated): C 51.8 (52.77), H 4.35 (4.43), N 16.86 (17.59), O 14.81 (15.08), S 9.12% (10.05%).

Crystal data

$C_{14}H_{14}N_4O_3S$	$D_x = 1.488 \text{ Mg m}^{-3}$
$M_r = 318.35$	Mo $K\alpha$ radiation
Monoclinic, $P2_1$	Cell parameters from 2717
a = 5.6995 (13) Å	reflections
b = 17.916 (4) Å	$\theta = 2.2-27.5^{\circ}$
c = 7.0525 (17) Å	$\mu = 0.25 \text{ mm}^{-1}$
$\beta = 99.424 \ (5)^{\circ}$	T = 298 (2) K
$V = 710.4 (3) \text{ Å}^3$	Block, colourless
Z = 2	$0.29 \times 0.27 \times 0.20$ mm

Data collection

Bruker SMART APEX CCD areadetector ω scans Absorption correction: multi-scan (SADABS; Sheldrick, 1996) $T_{\min} = 0.931, T_{\max} = 0.952$ 4765 measured reflections

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.039$ $wR(F^2) = 0.097$ S = 1.141678 reflections 199 parameters H-atom parameters constrained $l = -9 \rightarrow 8$ $w = 1/[\sigma^2(F_o^2) + (0.0477P)^2]$ + 0.1656P] where $P = (F_0^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{\rm max} < 0.001$

1678 independent reflections

 $R_{\rm int} = 0.021$

 $\theta_{\rm max} = 27.5^{\circ}$

 $h = -7 \rightarrow 7$

 $k = -14 \rightarrow 23$

1648 reflections with $I > 2\sigma(I)$

Table 1

Selected geometric parameters (Å, °).

S1-C8	1.677 (3)	N2-C9	1.456 (3)
D1-C7	1.221 (4)	C14-C12	1.348 (4)
D2-C10	1.229 (4)	C14-N4	1.357 (4)
O3-C10	1.244 (4)	C13-N4	1.304 (4)
N1-C7	1.369 (4)	C13-N3	1.318 (4)
N1-C8	1.382 (4)	C12-N3	1.377 (4)
N2-C8	1.316 (4)		
C8-N2-C9-C10 C10-C9-C11-C12	-155.5 (3) 84.7 (3)	C9-C11-C12-C14	124.1 (4)

Table 2	_	
Hydrogen-bonding geometry	(Å,	°).

$D - H \cdots A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$C9-H9A\cdots S1$	0.98	2.75	3.076 (3)	100
$N2 - H2A \cdots O1$	0.86	1.95	2.630 (3)	135
N3−H3 <i>C</i> ···O3	0.86	1.94	2.650 (4)	139
$N1 - H1A \cdots O3^{i}$	0.86	2.05	2.870 (4)	158
$N4 - H4B \cdot \cdot \cdot O2^{ii}$	0.86	1.84	2.650 (4)	156
$C13-H13A\cdots O1^{ii}$	0.93	2.40	3.070 (4)	129

Symmetry codes: (i) 1 + x, y, 1 + z; (ii) -x, $\frac{1}{2} + y$, 1 - z.

After their location in a difference map, all H atoms were placed geometrically at ideal positions and allowed to ride on the parent C atoms, with C–H = 0.93–0.98 Å, N–H = 0.86 Å and $U_{\rm iso}({\rm H})$ = 1.2 $U_{\rm eq}({\rm C,N})$. Due to the absence of any significant anomalous scatterers in the crystal, Friedel pairs were merged before the the final refinement.

Data collection: *SMART* (Siemens, 1996); cell refinement: *SAINT* (Siemens, 1996); data reduction: *SAINT*; program(s) used to solve structure: *SHELXTL* (Sheldrick, 1997); program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL*, *PARST* (Nardelli, 1995) and *PLATON* (Spek, 2003).

The authors thank the Malaysian Government and Universiti Kebangsaan Malaysia for the research grant IRPA No. 09-02-02-0163.

References

- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
- Benali-Cherif, N., Benguedouar, L., Cherouana, A., Bendjeddou, L. & Merazig, H. (2002). Acta Cryst. E58, 0822–0824.
- Edington, P. & Harding, M. M. (1974). Acta Cryst. B30, 204-207.
- Madden, J. J., McGandy, E. L., Seeman, N. C., Harding, M. M. & Hoy, A. (1972). Acta Cryst. B28, 2382–2389.
- Nardelli, M. (1995). J. Appl. Cryst. 28, 659.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (1997). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.
- Siemens (1996). *SMART* and *SAINT*. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
- Yusof, M. S. M. & Yamin, B. M. (2003). Acta Cryst. E59, 0828-0829.